Emotion recognition using a hierarchical binary decision tree approach

نویسندگان

  • Chi-Chun Lee
  • Emily Mower Provost
  • Carlos Busso
  • Sungbok Lee
  • Shrikanth S. Narayanan
چکیده

Emotion state tracking is an important aspect of humancomputer and human-robot interaction. It is important to design task specific emotion recognition systems for real-world applications. In this work, we propose a hierarchical structure loosely motivated by Appraisal Theory for emotion recognition. The levels in the hierarchical structure are carefully designed to place the easier classification task at the top level and delay the decision between highly ambiguous classes to the end. The proposed structure maps an input utterance into one of the five-emotion classes through subsequent layers of binary classifications. We obtain a balanced recall on each of the individual emotion classes using this hierarchical structure. The performance measure of the average unweighted recall percentage on the evaluation data set improves by 3.3% absolute (8.8% relative) over the baseline model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of excitation source features of speech for emotion recognition

During production of emotional speech there are deviations in the components of speech production mechanism when compared to normal speech. The objective of this study is to capture the deviations in features related to the excitation source component of speech, and to develop a system for automatic recognition of emotions based on these deviations. The emotions considered for this study are: a...

متن کامل

Emotion recognition in speech signal using emotion- extracting binary decision trees

The presented paper is concerned with emotion recognition based on speech signal. Two novel elements introduced in the method are an introduction of novel set of emotional speech descriptors and an application of a binary-tree based classifier, where consecutive emotions are extracted at each node, based on an assessment of feature triplets. The method has been verified using two databases of e...

متن کامل

Speech Emotion Recognition with Emotion-Pair Based Framework Considering Emotion Distribution Information in Dimensional Emotion Space

In this work, an emotion-pair based framework is proposed for speech emotion recognition, which constructs more discriminative feature subspaces for every two different emotions (emotion-pair) to generate more precise emotion bi-classification results. Furthermore, it is found that in the dimensional emotion space, the distances between some of the archetypal emotions are closer than the others...

متن کامل

A novel hierarchical speech emotion recognition method based on improved DDAGSVM

In order to improve the recognition accuracy of speech emotion recognition, in this paper, a novel hierarchical method based on improved Decision Directed Acyclic Graph SVM (improved DDAGSVM) is proposed for speech emotion recognition. The improved DDAGSVM is constructed according to the confusion degrees of emotion pairs. In addition, a geodesic distance-based testing algorithm is proposed for...

متن کامل

A hierarchical support vector machine based on feature-driven method for speech emotion recognition

Through the analysis of one-vs.-one, one-vs.-rest and the decision tree mechanism of binary support vector machine emotion classifiers, a method based on feature-driven hierarchical support vector machine is proposed for speech emotion recognition. For each layer, classifier used different feature parameters to drive its performance, and each emotion is subdivided layer by layer. This method di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Speech Communication

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009